Analyzing the Mode Collapse Problem in GANS

Nikitha Rao!, Piyush M. Surana® and Nypunya Devraj
101FB15ECS364, 201FB15ECS365
Department of Computer Science,
PES University, 100 Ft Ring Road, BSK III Stage, Bengaluru, India

Abstract—1t is easier for someone to identify Picasso’s paint-
ing than drawing one. Generative models, which are known for
generating or creating data, are considered much more difficult
to build and train when compared to discriminative models,
which are known for processing the data. We will understand
the working of GANs and discuss the process involved in
training. We will also try to understand why training a GAN
is hard and how many of the GAN models suffer from major
problems such as non convergence, mode collapse, diminished
gradient to name a few. In this paper, we will address the
problem of mode collapse and look at some of the ways in which
we can overcome this problem. We will discuss the working of
PacGAN and Unrolled GANS in depth as solutions to the mode
collapse problem.

I. INTRODUCTION TO GANS

Traditional neural networks can be fooled easily just
by adding a small amount of noise. This usually happens
because of overfitting as learning happens from a limited
number of images for each class. It could also happen when
there is not much non-linearity between the input-output
mapping.

One way to solve this would be to train the networks on
adversarial samples as well. To generate these adversarial
samples, we can use Deep Generative models. There are
different generative models like PixelCNN, Variational Auto-
encoders and Generative Adversarial Networks (GANs) [1].
Out of these, GANs give the best results.

Generative Adversarial Nets provide a new method to
estimate generative models through a process that is adver-
sarial i.e. two models are trained simultaneously- a generative
model (G) which is able to learn the distribution of data and
a discriminative model that can estimate the probability of a
sample coming from training data and not G. The purpose of
the generator is to take in noise vectors and produce images
that resembles the input data distribution closely and try to
fool the discriminator into classifying a fake image as a
real image. The function of the discriminator is to classify a
generated image as real or fake. Whats going on between the
generator and the discriminator here is a 2 player zero sum
game. In other words, in every move, the generator is trying
to maximize the chance of the discriminator misclassifying
the image and the discriminator is in turn trying to maximize
its chances of correctly classifying the incoming image.

The basic math in GANs can be described as a minimax
game. In the given equation we have two terms. The first
term is the expected log likelihood of an image x being real
with input samples from real data. We look to maximize

the first term because the discriminator needs to maximize
its probability of classifying an image correctly as real or
fake. Here, the images are sampled from the original data
distribution, which is the real data itself. Also, remember
that D(x) represents the probability that the input image is
real. Hence, the discriminator will have to maximize D(x)
(i.e., it has to be close to 1.0) and log(D(x)) . And hence,
the first term has to be maximized.

Objective
min(g) max(d) Ex~p .. [108(D(x;0a))] + Ezp,[1og(1 — D(G(z; 0g); 0a))]

The data distribution of the noise
The original data distribution as in the dataset

P, —>
Pdata ->
X ~ Pgata — > Data sampled from Pga
Z ~ Pgata — > Data sampled from P,

Ok

6; —> The parameters of the discriminator network

—> The parameters of the generator network

Fig. 2. Basic Math for GAN

for number of training iterations do
for k steps do
o Sample minibatch of m noise samples {z(), ..., 2(™)} from noise prior py(z).
e Sample minibatch of m examples {z(l) . z(m)} from data generating distribution

Ddata(T)-
o Update the discriminator by ascending its stochastic gradient:

Vo, % b [ng (m(i)) +log (1 -D (G (z<i>)))])

i

m
=1

end for
 Sample minibatch of m noise samples {z(1), ..., 2™} from noise prior py(2).
o Update the generator by descending its stochastic gradient:

Vo, Yo (10 (6 ().

end for

Fig. 3. Training Algorithm for GAN

The second term deals with the generated image from
the noise sample ’z’. It is the log likelihood of the image
generated by Generator being classified as fake by the
discriminator.Images from the generators output are passed
in to the discriminator. From the Generator’s perspective,
it has to maximize the chances of the discriminator getting
fooled by the generated images. Which means, the generator
should want to maximize D(G(z)) . Which means, it should
look to minimize 1 D(G(z)) and hence log(1 D(G(z)).

In a Vanilla GAN, for every 'k’ steps of training for
discriminator, generator is trained once. We stop the training

— Discriminator Network - Predicted Labels
D-dimensional) '

noise vector

I - Generator Network — i

Fig. 1.

when the Nash equilibrium is reached i.e. the GAN model
converges. Ideally, we would expect the discriminator to
always give *0.5” as the output. The generator is the ultimate
winner.

GANSs are used in various applications today. It is used in
text translation to images. It is used when the training data
is small. GANs are also used in Drug Discovery, Molecule
Development in Oncology and so on.

Many GAN models suffer the following major problems:

« Non-convergence: The model parameters oscillate,
destabilize and never converge

o Diminished gradient: The discriminator gets too suc-
cessful that the generator gradient vanishes and learns
nothing

« Mode collapse: The generator collapses which produces
limited varieties of samples

II. UNDERSTANDING THE MODE COLLAPSE PROBLEM

Mode collapse is one of the most important issues to be
solved for training GANSs. It is a failure case that is encoun-
tered very commonly for GANs where the generator is able
to learn to only produce samples which have very low variety
despite the high degree of variations present in the training
set. A lot of interesting real-world data distributions are seen
to be multimodal and highly complex. It means that, the data
is described by probability distribution which has multiple
peaks and different sub-groups of samples are concentrated.
When training the GAN a commonly encountered issue is
that a mode collapse will occur. This results in the generator
outputting samples from a single or limited set of modes.
The generator will thus show not very good diversity among
the generated samples, which reduces the usefulness of the
learnt GAN.

To understand this better, we will take a simple example
of a dataset which contains a mixture of readings during the

GAN’s Architecture

Alice Springs

A_
35

Temperature (°C)

Probability

South Pole
]
I

-20

Fig. 4. Probability distribution of temperatures in South pole and Australian
Alice springs

day in Summer in Alice Springs in central Australia (usually
very hot) and the South Pole of Antarctica (usually very
cold). This distribution is clearly bimodal - i.e. there exist
peaks at the mean temperatures of the places with a gap in
between them. The graph shown in the Figure 4 shows that
more clearly.

To train a GAN that can actually produce temperature
values that are plausible, is not that simple.Based on our
intuition, the generator would be expected to learn to be able
to produce cold and hot temperatures with their probabilities
being roughly equal. But,the issue of mode collapse can oc-
cur, which can make the generator output only samples from
one mode (example only hot temperatures). This happens
mainly because :

.The generator believes that the discriminator can be
fooled into thinking that the generator is outputting
real temperatures by outputting only values close to the

12y W)~
Do

\B‘e‘(‘ﬂ -CJ:

i -
-

VAU e—0

\]

SHEUNE QSO
Uh

Lo~
o e R GREE RE Re
HNRPIH

IANANANANANANANA
(AR ARANRNAFRY AN A
IANANANANANANANA
(ANARAFAYRYRY AN A
[ANARANAR AN AN AN A
IARANANANANANANA
IANANANANANANANA
guyyyyun
steps 20k steps

&
A
7
Q
9
3
L ¥y
&
&
#
P
&
£
#
P
&

AR RRERELRRERR TN UEQ
10-\
PP R R RWY Ry @

LR R E B R
L R R
TEPEREERHRAR RS
LE R EE R BT

10

=

WHYOOEOWA
Sl R i a aal (Na I e W e PR o
O~ HVy—2 P~
N WA -
~£ QMNP B
DB~V —c? @~
N WA -
~£ QN A e S

Lk
b b
& &
& o
bbbl

bbb bbb
50K steps 100k steps

R A Ak Ak N [P E R TERC

Fig. 5. Mode collapse in generating digits from MNIST

Antarctic temperatures The discriminator can counter
that by instead learning that the real temperatures
are all hot Australian temperatures (not generated by
generator), and it basically guesses cold only Antarc-
tic temperatures since they still are indistinguishable.
The generator exploits the discriminator by switching
modes to produce values close to Australian temper-
atures instead, abandoning the Antarctic mode. It is
assumed by the discriminator that all the hot temper-
atures from Australia are fake and the ones from cold
Antarctic area are real. The first case is repeated

This game is called the game of cat-and-mouse and it repeats
with the generator never being truly incentivised to cover
all the modes. The generator collapses and produces only
limited varieties of samples.

Another example for this is using the MNIST dataset
where there are 10 major modes from digit ’0’ to digit *9’.
The samples in Figure 5 are generated by two different
GANSs. The top row produces all 10 modes while the second
row creates a single mode only (the digit °6).

In reality, mode collapse has a varied level of severity
varying from total collapse (all samples generated are very
identical) to partial collapse (most sampled have very similar
features). Mode collapse can, unfortunately, occur randomly,
making playing around with GAN architectures very diffi-
cult. Mode collapse is a very well-recognized problem, and a
few attempts have been made by some researchers to address
1t.

III. SOLUTIONS TO THE MODE COLLAPSE PROBLEM

A. Encourage diversity

It is nearly impossible for us to determine the output
diversity when we consider the individual samples in pure
isolation. The next logical step is to use batches of samples
instead to directly encourage diversity. The two techniques
to achieve this are feature matching and mini-batch discrim-
ination.

In feature matching, we modify the cost function of the
generator to factor in the diversity present in the generated
batches. This is done by matching the statistics of the
discriminator’s features for the fake batches and that of real
batches.

In mini-batch discrimination, we give the discriminator
power to compare samples across a batch instead of just an
individual sample to determine whether the whole batch is
fake or real.

B. Using multiple GANs

Instead of fighting the mode collapse, we could accept that
a given GAN will be able to cover only a small subset of
all the modes that are present in the given dataset. We can
then use multiple GANs and train them for generating data
with different modes. When we combine all the GANSs, the
set will cover all the modes that were in the dataset. The
major disadvantage using this approach is that training of
multiple GANSs is very time consuming and computationally
expensive.

C. Anticipate counterplay

One of the ways to prevent the oscillation between modes
is to take a peek into the future, allowing us to anticipate
counterplay during updation of parameters. The approach
here is very similar to minimax in game theory. Intuitively,
this idea prevents the players from making a move that can
easily be countered in the GAN game.

D. Using experience replay

We can minimize oscillating between modes by showing
the discriminator some old samples that are fake from time
to time. This is done to prevent the discriminator network
from becoming exploitatory, especially for the modes that
have not previously been explored by the generator. We can
also achieve a similar effect by occasionally substituting the
generator or discriminator with an older version for a few
iterations.

IV. COMPARISON OF SOLUTIONS IMPLEMENTED IN
PAPERS

A. PacGAN: The power of two samples in generative adver-
sarial networks

In this project [2], they proposed a principled approach
to understand the connection between mode collapse and
packing, showing multiple samples simulataneously at the
discriminator input. This intuition that packing should help
mitigate mode collapse has been around since the original
minibatch discriminator.They make this this intuition precise
and make the following contributions.

49 Conceptual: They propose a mathematical definition of
mode collapse, that allows them to measure how severe
mode collapse is for a given pair of target distribution
P and the generator distribution Q. This allows one
to formally compare two generators, in terms of how
strong mode collapses they exhibit.

o Analytical: They borrow proof techniques from Black-
well’s seminal result in binary hypothesis testing in
”Comparison of experiments” in 1951 and data pro-
cessing inequalities from “The composition theorem for
differential privacy” by Kairouz, Oh, and Viswanath,
originally introduced for analyzing composition of dif-
ferentially private mechanisms. This allows them to
prove a fundamental connection between mode collapse
and packing. In a nutshell, packed GAN naturally
penalizes those generators that exhibit strong mode
collapse, thus encouraging PacGAN to learn a non-
mode-collapsing generators.

o Experimental: They propose a simple architectural
change that can be applied to any standard GANs. The
simplicity of the proposed architecture allows one to
focus on the gains that are resulting from the idea of
packing. They measure the gain of packing in bench-
mark datasets where quantifiable empirical measure of
mode collapse has been introduced in the GAN litera-
ture, including synthetic mixture of Gaussians, stacked
MNIST, and CelebA. They show how packing improves

mode collapse in all such benchmark datasets, using the
experimental settings, hyper parameters, and the codes
from existing literature, for fair comparisons.

1) Main Idea behind PacGAN: One of the main reasons
GANs suffer from mode collapse is because most of the
popular GANs unnecessarily restrict the discriminator to
be a function of a single input. In other words, diversity
(or lack of diversity) in the generated samples is easier to
detect if the discriminator is allowed to make the decision
based on multiple samples jointly. Our main contribution
is in making this informal intuition formal, by introducing
a mathematical definition of mode collapse, and proving
that packing naturally penalizes severe mode collapse. When
implementing this idea of packing in all our experiments,
we make minimal changes to a given mother architecture as
shown in Figure 10.

GAN Discriminator O PacGAN2 Discriminator
/7‘\‘I
@O~ |@
N 7 2
Input Layer O / ™ k/ =i 5 K_/“
_/ @ D
G |
Input Layer Z
Fig. 6. Difference in GAN Discriminator and PacGAN2 Discriminator

When packing a given mother architecture for empiri-
cal comparisons, they were careful in trying to match all
hyperparameters used in training. However, there is one
hyperparameter that is tricky, which is the minibatch size
in the stochastic gradient update. Initially, they matched
the minibatch size (for example averaging over 64 sampled
gradients for both GAN and PacGAN2) as shown in the
figure 7. The reasoning for this choice was that they thought
it is fair to have the same number of gradient computation per
minibatch for both GAN and PacGAN. However, a question
was raised that PacGAN now sees twice as more samples to
perform one gradient update, and the gain might be coming
from this increased effective minibatch size, which was not
their intention.

luuub atch size = 64

minibatch size = 64
— '“' fake D (X, X

D(X) [)

asi8 Il

PacGAN2

a mal \‘ake roal

aga| |1

GAN

Fig. 7. Difference in GAN Discriminator and PacGAN2 Discriminators
Architecture using batch size 64

To address this concern, they redid some of the exper-
iments with the following minibatch update as shown in

Figure 8. They make the minibatch size smaller (by a factor
of two) for PacGAN?2, such that the number of samples seen
by the discriminator per gradient update is the same. Notice
that now this is in some sense unfair to the PacGAN2 as
they are allowing half as much computation (to compute
the gradient). Even then, they observed for the stacked
MNIST experiment as per VEEGAN setting that this choice
of minibatch size allows PacGAN?2 to recover all 1000 modes
always.

uumlmtcll size = 32

mmlhut(]n size = (4
ml fnh. md D (X1, X

e IllI |

aauﬁll
PacG AN2

GAN

Fig. 8. Difference in GAN Discriminator and PacGAN2 Discriminators
Architecture using batch size 32

PacGANs are able to overcome the shortcomings of a
GAN, and achieve the remaining performance gain that can-
not be gained by simply increasing the discriminator sizes.
This suggests that packing gain is fundamental in providing
the extra gain not attainable by larger discriminators. This
idea is illustrated in the graph in Figure 9

—

244 e
23
22 -
21

204

P

—8— GAN
PacGANZ

—8— PacGAN3

—&— PacGAN4

19 4

18

17 A

0 100000 200000 300000 400000 500000 600000

Fig. 9. Performance comparison upon increasing discriminator size

2) Conclusion: We train DCGAN and PacDCGAN2 on
CelebA dataset, and evaluate the probability of collision for
various sizes of the discriminator. The table in Figure ??
shows that for various discriminator sizes, PAcDCGAN2 has
a smaller collision probability, implying that the PacGAN2
generated more diverse samples when compared to a DC-
GAN. Therefore, we can say that PacGAN has successfully
overcome the mode collapse problem and provides much
more variations in its generated output.

discriminator size | probability of collision | probability of collision
DCGAN PacDCGAN2
d 1 0.3
4d 0.4 0
16d 0.8 o
25d 0.0 0.2

Fig. 10. Results comparison DCGAN PacDCGAN2

B. Unrolled generative adversarial networks

Unrolled GANs [3] allow the generator to “unroll” the
updates of the given discriminator in a completely differ-
entiable manner. So the generator learns to not just fool
the present discriminator network, but learns to fool the
discriminator maximally after it has responded, thus taking
into account counterplay. Some downsides to this approach
include increased time in training (as every generator update
needs multiple discriminator updates to be simulated) and a
much more complicated calculation to get the gradient (back-
propogation using an optimiser’s update step is difficult).

— Forward Pass
8y, Gradients
8 Gradients

Unrolling
—» SGD
Gradients

Fig. 11.

Unrolled GAN architecture

Fig. 12. Discriminator architecture

1) Main Idea behind Unrolled GAN: In Unrolled GAN,
we give an opportunity for the generator to unroll k steps
on how the discriminator may optimize itself. Then we
update the generator using backpropagation with the cost
calculated in the final k step. The lookahead discourages
the generator to exploit local optimal that easily counteract
by the discriminator. Otherwise, the model will oscillate and
even become unstable. Unrolled GAN lowers the chance that
the generator is overfitted for a specific discriminator. This
lessens mode collapse and improves stability.

[x

Fig. 13. Generator unrolled for 3 steps
. O &
. - s * .
- - - u: :
Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k Target
Fig. 14. Results on toy 2D mixture of Gaussians dataset
Discriminator Size Unrolling steps 0 1 5 10
1/4 size of D compared to G | Modes generated | 30.6 = 20.73 65.4 3475 | 236.4 = 63.30 | 327.2 £ 74.67
KL(model ||data) 599 £ 042 5911 =0.14 467043 4.66 = 0.46
1/2 size of D compared to G | Modes generated | 628.0 = 140.9 | 523.6 = 55.768 | 732.0 = 4498 | 817.4 + 37.91
KL(model ||data) | 2.58 =0.751 2.44 £0.26 1.66 = 0.090 1.43 = 0.12

Fig. 15.

2) Discriminator Training: In Unrolled GAN, we train
the discriminator exactly the same way as GAN.We compute
the cost function and use backpropagation to fit the model
parameters of the discriminator D and the generator G.

3) Generator Training: Unrolled GAN plays k steps to
learn how the discriminator may optimize itself for the
specific generator. In general, we use 5 to 10 unrolled steps
which demonstrates pretty good model performance. The
cost function is based on the latest discriminators model
parameters while the generators model parameters remain
the same. At each step, we apply the gradient descent to
optimize a new model for the discriminator. We only use
the first step to update the discriminator. The unrolling is
used by the generator to predict moves but not used in the
discriminator optimization. Otherwise, we may overfit the
discriminator for a specific generator.

For the generator, we backpropagate the gradient through-
out all k steps. This is very similar to how LSTM is unrolled
and how gradients are backpropagated. Since we have k
unrolled steps, the generator also accumulates the parameter
changes k times.

To summarize, the Unrolled GAN uses the cost function
calculated in the last step to perform the backpropagation

Comparison of number of modes discovered by a GAN with different number of unrolled steps

for the generator while the discriminator uses the first step
only.

4) Conclusion: In the Figure 14, Unrolling the discrim-
inator will stabilize the GAN training for a toy 2D mixture
of Gaussians dataset. The columns represent a heatmap for
the generator’s distribution upon increasing the number of
steps in training. The last column represents the distribution
of data. The first row displays training of a GAN with
ten unrolling steps. The generator is quick to spread out
and converge to the desired target distribution. The second
row displays the training of a standard GAN. The generator
rotates through the modes of the data distribution and fails
to converge to a distribution representative of the target as it
only assigns a significant probability mass to a single data
mode at once.

Provided with a less complex generator, the GAN in the
second row manages to generate good data quality but fail
to achieve diversity. The mode collapses. Applying Unrolled
GAN, it discovers all 8 modes with high quality (the first
row).

[1]

[2]

[3]

REFERENCES

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,
David Warde-Farley, Sherjil Ozairy, Aaron Courville, Yoshua Bengioz.
Generative Adversarial Nets.ArXiv e-prints. 2014

Zinan Lin, Ashish Khetan, Giulia C. Fanti and Sewoong Oh. PacGAN:
The power of two samples in generative adversarial networks. CoRR.
2017

Luke Metz, Ben Poole, David Pfau, Jascha Sohl-Dickstein. Unrolled
generative adversarial networks. ICLR 2017

